Families of Baker domains II

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Families of Baker Domains Ii

Let f be a transcendental meromorphic function and U be an invariant Baker domain of f . We use estimates for the hyperbolic metric to show that there is a relationship between the size of U and the proximity of f in U to the identity function, and illustrate this by discussing how the dynamics of transcendental entire functions of the following form vary with the parameter a: f(z) = az + bzke−...

متن کامل

Univalent Baker Domains

We classify Baker domains U for entire maps with fj U univalent into three diierent types, giving several criteria which characterize them. Some new examples of such domains are presented, including a domain with disconnected boundary in C and a domain which spirals towards innnity.

متن کامل

Deformation of Entire Functions with Baker Domains

We consider entire transcendental functions f with an invariant (or periodic) Baker domain U. First, we classify these domains into three types (hyperbolic, simply parabolic and doubly parabolic) according to the surface they induce when we quotient by the dynamics. Second, we study the space of quasiconformal deformations of an entire map with such a Baker domain by studying its Teichmüller sp...

متن کامل

Singularities of meromorphic functions with Baker domains

We show that if f is a transcendental meromorphic function with a finite number of poles and f has a cycle of Baker domains of period p, then there exist C > 1 and r0 > 0 such { z : 1 C r < |z| < Cr } sing(f−p) ∅, for r r0. We also give examples to show that this result fails for transcendental meromorphic functions with infinitely many poles.

متن کامل

Univalent Baker Domains and Boundary of Deformations

For f an entire transcendental map with univalent Baker domain U of hyperbolic type I, we study pinching deformations in U , the support of this deformation being a lamination in the grand orbit of U . We show that pinching along a lamination that contains the geodesic λ∞ (See Section 3.1) does not converges. However, pinching at a lamination that does not contains such λ∞, converges and conver...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Conformal Geometry and Dynamics of the American Mathematical Society

سال: 1999

ISSN: 1088-4173

DOI: 10.1090/s1088-4173-99-00045-4